cos(a-b)/cos(a+b)=(cosacosb+sinasinb) / (cosacob-sinasinb)
=(1+tanatanb) / (1-tanatanb)
=(1+k1k2) / (1-k1k2)
设P(x,y)
则k1k2=y^2/(x^2-a^2)
由e=根3/2
故x^2-a^2=-4y^2
故k1k2=-1/4
代入前式得3/5
cos(a-b)/cos(a+b)=(cosacosb+sinasinb) / (cosacob-sinasinb)
=(1+tanatanb) / (1-tanatanb)
=(1+k1k2) / (1-k1k2)
设P(x,y)
则k1k2=y^2/(x^2-a^2)
由e=根3/2
故x^2-a^2=-4y^2
故k1k2=-1/4
代入前式得3/5