已知x,y∈R,且(x^2+y^2)/2=1,则 x√(1+y^2)的最大值
∵(x^2+y^2)/2=1,∴x^2+y^2=2
x√(1+y^2)= √[x^2(1+y^2)
≤(1/2)[x^2+(1+y^2)]=(1/2)(2+1)=3/2
∴最大值为3/2
已知x,y∈R,且(x^2+y^2)/2=1,则 x√(1+y^2)的最大值
∵(x^2+y^2)/2=1,∴x^2+y^2=2
x√(1+y^2)= √[x^2(1+y^2)
≤(1/2)[x^2+(1+y^2)]=(1/2)(2+1)=3/2
∴最大值为3/2