立方和公式:
x^3+y^3=(x+y)(x^2-xy+y^2)
故:
n^3+(n-1)^3=[n+(n-1)]*[n^2-n*(n-1)+(n-1)^2]=[n+(n-1)]*(n^2-n+1)
n^3+1^3=(n+1)(n^2-n+1)
[n^3+(n-1)^3]/(n^3+1^3)=[n+(n-1)]/(n+1)
上式成立.
(5^3+4^3)/(5^3+1^3)=(5+4)/(5+1)
立方和公式:
x^3+y^3=(x+y)(x^2-xy+y^2)
故:
n^3+(n-1)^3=[n+(n-1)]*[n^2-n*(n-1)+(n-1)^2]=[n+(n-1)]*(n^2-n+1)
n^3+1^3=(n+1)(n^2-n+1)
[n^3+(n-1)^3]/(n^3+1^3)=[n+(n-1)]/(n+1)
上式成立.
(5^3+4^3)/(5^3+1^3)=(5+4)/(5+1)