y=sin^4x+cos^4x=[(sinx)^2+(cosx)^2]^2-2(sinxcosx)^2
=1-2(sinxcosx)^2
=1-[(sin2x)^2]/2
=1-[1-(cos4x)]/4
=(3+cos4x)/4
最大值=1
最小值=1/2
值域[1/2,1].
y=sin^4x+cos^4x=[(sinx)^2+(cosx)^2]^2-2(sinxcosx)^2
=1-2(sinxcosx)^2
=1-[(sin2x)^2]/2
=1-[1-(cos4x)]/4
=(3+cos4x)/4
最大值=1
最小值=1/2
值域[1/2,1].