下面这里有详细的解释:
"形函数" 英文对照
shape function of; shape function; shape functions;
"形函数" 在学术文献中的解释
1、实际上尝试函数代表一种单元上近似解的插值关系它决定近似解在单元上的形状因此尝试函数在有限员发中又称为形函数
2、)两式中的Ni称为形函数,也叫插值函数.采用(1)式的坐标变换公式可将图1(a)所示的不规则曲边四边形映射成图1(b)所示的边长为2的正方形单元
3、Nr是面积坐标LiLjLm的二阶多项式它由节点在三角形内的位置决定与三角形单元的形状、大小及位置无关称为形函数
4、因此尝试函数在有限元法中又称为形函数.每个节点都有一个相应的形函数,该形函数在该节点上的值为1,而在其他节点上的值均为0
5、有限元法中,ΦI常被称为形函数.在通常情况下,最终解答都表达为下述形式 uh=∑NIΦI·uI(2)2 不同数值分析方法的联系2
6、尺d(l、式(l)的离散形式为Nfh(x)一艺f(xa)诚x一xa,h)气·艺此f(xa)(2)口=l口〔M与有限元类似,汽称为形函数,但与有限元不同,形函数汽(凡),气,所以fh(xa)尹f(xa)
7、与有限元类似,求解域内任意一点的位移可以表述为u(x)=∑NI=1ΦI(x).I(3)其中ΦI(x)称为形函数.无网格方法计算形函数的途径与有限元不同:有限元采用单元内节点插值,而无网格方法采用移动最小二乘法得到
8、(x))(x)称为形函数,n.(x)=艺几(x)〔A一‘(x)B(x),j二lRv二Fu一f尹ORs=Gu一g笋0(14a)(14b)通过适当的方法选择待定系数u、,则可使残值最小
9、(x)称为形函数,且竹f(x)=f善pj(x)[A叫(工)B(x)]直N(x):(竹l(x),竹2(x),.,竹.(工))由(16)式可得到形函数关于坐标的偏导数:,
10、式中,子矩阵[N]i=[NiNxiNyi](i=1,2,3,4)称为形函数.Ni=(1+εiε)(1+ηiη)(2+εiε+ηiη-ε2-η2)8.Nxi=-bηi(1+εiε)(1+ηiη)(1-η2)8