因为tan(a+b)=(tana+tanb)/(1-tana*tanb)
tan(π/4)=(tana+tanb)/(1-tana*tanb)
1-tana*tanb=tana+tanb
又(1-tana)/(1+tanb)
=1+tanb-tana-tana*tanb
=tana+tanb+tanb-tana
=2tan
因为tan(a+b)=(tana+tanb)/(1-tana*tanb)
tan(π/4)=(tana+tanb)/(1-tana*tanb)
1-tana*tanb=tana+tanb
又(1-tana)/(1+tanb)
=1+tanb-tana-tana*tanb
=tana+tanb+tanb-tana
=2tan