用到如下结论:
如果 0= (1-(x1+x2+...+x(N-1))(1-xN)
= 1 -(x1+...+xN)+(x1+...+x(N-1))xN
>= 1-(x1+x2+...+xN)
回到原题:
[1-(1/3)][1-(1/3)^2][1-(1/3)^3]·…·[1-(1/3)^n]
>= 1 - ( 1/3+ 1/3^2+...+ 1/3^n)
> 1 - 1/3 * 1/(1-1/3)=1/2
用到如下结论:
如果 0= (1-(x1+x2+...+x(N-1))(1-xN)
= 1 -(x1+...+xN)+(x1+...+x(N-1))xN
>= 1-(x1+x2+...+xN)
回到原题:
[1-(1/3)][1-(1/3)^2][1-(1/3)^3]·…·[1-(1/3)^n]
>= 1 - ( 1/3+ 1/3^2+...+ 1/3^n)
> 1 - 1/3 * 1/(1-1/3)=1/2