已知抛物线y=ax2+bx+c经过A(0,2),点B(0,4),作AC垂直于AB交x轴于点C,点C正好在此抛物线上.

1个回答

  • 第一问 将A点坐标代入得c=2,根据射影定理得点C为(-1,0).把B,C两点坐标代入抛物线方程解得a=-0.5,b=1.5.在此提醒你,题目中B的坐标是错的,我是按照(4,0)算的.

    第二问,把直线AB的方程写出来,设点P为(p,-0.5p²+1.5p+2),将P点坐标代入点到直线距离的公式然后化简整理,最后把p换成x,令方程等于y,就可以,y就是距离.

    第三问 三角形ABP的面积是线段AB的长乘P点到AB的距离d再乘二分之一.先用两点间距离公式求出线段AB的长度为√20,即2√5,设△ABP的面积为S,则S=½×2√5×(第二问求出的距离方程d).

    令S=3,解方程求出x,将x代入抛物线方程既得点p坐标.

    点P的横轴的取值范围是﹙0,4﹚,开区间,将0和4代入S,解出S的范围,看看有几个整数再反解x就可以了

    我已经高中毕业快一年了,公式记得也不是很清楚,所以将方法写给你.手敲了这么久,希望会采纳吧.如果你是高中生希望能对你的数学有所帮助.