ab-(a+b)=1
b=(a+1)/(a-1)
则ab=a*(a+1)/(a-1)
=(a^2+a)/(a-1)
=a+2+2/(a-1)
=3+(a-1)+2/(a-1)
≥3+2√[(a-1)*2/(a-1)]
=3+2√2
所以ab的最小值是3+2√2
ab-(a+b)=1
b=(a+1)/(a-1)
则ab=a*(a+1)/(a-1)
=(a^2+a)/(a-1)
=a+2+2/(a-1)
=3+(a-1)+2/(a-1)
≥3+2√[(a-1)*2/(a-1)]
=3+2√2
所以ab的最小值是3+2√2