如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,

1个回答

  • 解题思路:把(0,-3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.

    把(0,-3)代入抛物线的解析式得:c=-3,

    ∴y=x2+bx-3,

    ∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,

    ∴把x=1代入y=x2+bx-3得:y=1+b-3<0

    把x=3代入y=x2+bx-3得:y=9+3b-3>0,

    ∴-2<b<2,

    即在-2<b<2范围内的任何一个数都符合,

    故答案为:1(在-2<b<2范围内的任何一个数).

    点评:

    本题考点: 抛物线与x轴的交点.

    考点点评: 本题主要考查对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解此题的关键.