解题思路:由已知中函数f(x)=ax+b的图象过点(1,4),其反函数f-1(x)的图象过点(2,0),函数f(x)=ax+b的图象过点(0,2),我们可以构造一个关于a,b的方程组,解方程组求出a,b的值,即可得到f(x)的表达式.
∵函数f(x)=ax+b的图象过点(1,4),
∴4=a+b…①
又∵反函数f-1(x)的图象过点(2,0),
∴函数f(x)=ax-k的图象过点(0,2),
∴2=a0+b…②
联立①②后,解得
a=3,b=1
∴f(x)=3x+1
故选A.
点评:
本题考点: 反函数.
考点点评: 本题考查的知识点是函数解析式的求解,反函数,其中根据反函数f-1(x)的图象过点(2,0),得到函数f(x)=ax+b的图象过点(0,2),是解答本题的关键.