∵BP、CP是∠ABC和∠ACB的角平分线,
∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB,
∵∠ABC+∠ACB=180°-∠A,
∠BPC=180°-∠PBC-∠PCB=180°-1/2(∠ABC+∠ACB)=180°-1/2(180°-∠A)=90°+1/2∠A,
∴∠BPC=90°+1/2∠A
∵BP、CP是∠ABC和∠ACB的角平分线,
∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB,
∵∠ABC+∠ACB=180°-∠A,
∠BPC=180°-∠PBC-∠PCB=180°-1/2(∠ABC+∠ACB)=180°-1/2(180°-∠A)=90°+1/2∠A,
∴∠BPC=90°+1/2∠A