令S=1+2/3+3/3^2+4/3^3+……+11/3^10
则3S=3+2+3/3+4/3^2+……+11/3^9
所以3S-S=3+1+1/3+1/3^2+……+1/3^9-11/3^10
=3+1*[1-(1/3)^10]/(1-1/3)-11/3^10
=9/2-3/(2*3^10)-2*11/(2*3^10)
=9/2-25/(2*3^10)
所以S=9/4-25/(4*3^10)
令S=1+2/3+3/3^2+4/3^3+……+11/3^10
则3S=3+2+3/3+4/3^2+……+11/3^9
所以3S-S=3+1+1/3+1/3^2+……+1/3^9-11/3^10
=3+1*[1-(1/3)^10]/(1-1/3)-11/3^10
=9/2-3/(2*3^10)-2*11/(2*3^10)
=9/2-25/(2*3^10)
所以S=9/4-25/(4*3^10)