椭圆方程为:x^2/5+y^2/4=1,
c=1,
右焦点坐标F2(1,0),
设直线方程为:y=k(x-1),
设交点A(x1,y1),B(x2,y2),
x^2/5+k^2(x-1)^2/4=1,
(4+5k^2)x^2-10k^2x+5k^2-20=0,
根据韦达定理,
x1+x2=10k^2/(4+5k^2),
x1x2=(5k^2-20)/(4+5k^2),
根据弦长公式,
|AB|=√(1+ k^2)(x1-x2)^2
=√(1+k^2)[(x1+x2)^2-4x1x2]
=√(1+k^2)[(320k^2+320)/(4+5k^2)^2]
=8√5(1+k^2)/(4+5k^2)
8√5(1+k^2)/(4+5k^2)=5√5/3,
∴k=±2,直线l的斜率是±2.