很严格的证明一时也想不出,姑且这样证吧:
设四个边按顺时针分别是abcd
(1)在等周时面积最大的四边形应有以下性质:a=b,c=d
证:假定面积最大的四边形不满足此条件,即a≠b,c≠d.用一个对角线把这个四边形分成两个三角形,a,b和c,d各在一个三角形中.利用海伦公式和均值不等式很容易证明,如果令a'=b',c'=d',则新的四边形比原有的要大,与假设矛盾.这样就证明了(1)
(2)利用(1),容易证明面积最大的四边形应满足a=b=c=d,或者说这个四边形是一种菱形
证明法同1类似
(3)容易证明在满足(2)的菱形中,有一个角是直角时面积最大,因此这个菱形是正方形.
综上,周长相等的四边形中,正方形面积最大.