lim(x->正无穷)(x+(1+x^2)^1/2)^1/x
对(x+(1+x^2)^1/2)^1/x 求对数
lim(x->正无穷)ln[(x+(1+x^2)^1/2)^1/x ]
=lim(x->正无穷){ln[x+(1+x^2)^1/2]}/x (∞/∞型,适用罗必塔法则)
=lim(x->∞)[1+1/2*(1+x^2)^(-1/2)*2x]/[x+(1+x^2)^1/2]
=lim(x->∞)[(1+x^2)^(1/2)+x]/{[x+(1+x^2)^1/2]*[(1+x^2)^(1/2)]}
=lim(x->∞)1/[(1+x^2)^(1/2)]}
=0
e^0=1
所以lim(x->正无穷)(x+(1+x^2)^1/2)^1/x=1