(x+(1+x^2)^1/2)^1/x的极限,x趋于正无穷

2个回答

  • lim(x->正无穷)(x+(1+x^2)^1/2)^1/x

    对(x+(1+x^2)^1/2)^1/x 求对数

    lim(x->正无穷)ln[(x+(1+x^2)^1/2)^1/x ]

    =lim(x->正无穷){ln[x+(1+x^2)^1/2]}/x (∞/∞型,适用罗必塔法则)

    =lim(x->∞)[1+1/2*(1+x^2)^(-1/2)*2x]/[x+(1+x^2)^1/2]

    =lim(x->∞)[(1+x^2)^(1/2)+x]/{[x+(1+x^2)^1/2]*[(1+x^2)^(1/2)]}

    =lim(x->∞)1/[(1+x^2)^(1/2)]}

    =0

    e^0=1

    所以lim(x->正无穷)(x+(1+x^2)^1/2)^1/x=1