x=1/x,所以x=±1
(x^2-x-6)/(x+3)÷[(x-3)/(x^2-x-12)]
=(x-3)(x+2)/(x+3)÷[(x-3)/(x+3)(x-4)]
=(x-3)(x+2)/(x+3)×[(x+3)(x-4)/(x-3)]
=(x+2)(x-4)
若x=1,则原式=(1+2)×(1-4)=-9
若x=-1,则原式=(-1+2)×(-1-4)=-5
x=1/x,所以x=±1
(x^2-x-6)/(x+3)÷[(x-3)/(x^2-x-12)]
=(x-3)(x+2)/(x+3)÷[(x-3)/(x+3)(x-4)]
=(x-3)(x+2)/(x+3)×[(x+3)(x-4)/(x-3)]
=(x+2)(x-4)
若x=1,则原式=(1+2)×(1-4)=-9
若x=-1,则原式=(-1+2)×(-1-4)=-5