f(x)=sin2πx+(cosπx)^2
=sin2πx+(cos2πx+1)/2
=sin2πx+cos2πx/2+1/2
=(2sin2πx+cos2πx)/2+1/2
=根号5*sin(2πx+a)/2+1/2 (其中tana=1/2)
所以最小周期T=2π/2π=1
f(x)=sin2πx+(cosπx)^2
=sin2πx+(cos2πx+1)/2
=sin2πx+cos2πx/2+1/2
=(2sin2πx+cos2πx)/2+1/2
=根号5*sin(2πx+a)/2+1/2 (其中tana=1/2)
所以最小周期T=2π/2π=1