已知{an}的通项an=(2n-3)*4^n-2 求数列{an}的前n项和Sn

1个回答

  • a1 = -1 * 4^(-1)

    a2 = 1 * 4^0

    a3 = 3 * 4^1

    a4 = 5 * 4^2

    .

    an = (2n - 3) * 4^(n - 2)

    Sn = a1 + a2 + a3 + a4 + a5 +.+ (2n - 3) * 4^(n - 2)

    Sn = -1 * 4^(-1) + 1 * 4^0 + 3 * 4^1 + 5 * 4^2+.+ (2n - 3) * 4^(n - 2)----(1)

    等式两边同时乘以 4 得

    4Sn = -1 * 4^0 + 1 * 4^1 + 3 * 4^2 + 5 * 4^3+.+ (2n - 3) * 4^(n - 1)——--(2)

    (1)-(2)得

    -3Sn = -1 * 4^(-1) + 2 * 4^0 + 2 * 4^1 + 2 * 4^2 +.+ 2 * 4^(n - 2) - (2n - 3) * 4^(n - 1)

    = 2 [ 4^0 + 4^1 + 4^2 +.+ 4^(n - 2)] - (2n - 3) * 4^(n - 1) -1/4

    = 2 [4^(n -1) - 1] /3 - (2n - 3) * 4^(n - 1) -1/4

    = 4^(n -1) * [ 2 - 3 (2n - 3) ] /3 - 2/3 - 1/4

    = 4^(n -1) * (11 - 6n) /3 - 17/12

    Sn = 4^(n -1) * (6n - 11) /9 + 17/36