由e= ca=12,知 ba=32,由x1,x2是方程ax2+bx-c=0的两个实根,知 x1+x2=-ba=-32, x1x2=-ca=-12,所以x12+x22=(x1+x2)2-2x1x2= 34+1=74<3,由此知点P(x1,x2)必在圆x2+y2=3内.∵e= ca=12,∴ ba=32,
∵x1,x2是方程ax2+bx-c=0的两个实根,
∴由韦达定理: x1+x2=-ba=-32, x1x2=-ca=-12,
所以x12+x22=(x1+x2)2-2x1x2
= 34+1=74<3,
所以点P(x1,x2)必在圆x2+y2=3内.
故选A.