1.证明:作AB的垂直平分线分别交AB,BC与点F,G.并连接GA,EA
∵FG为AB的垂直平分线
∴BF=AF
∵在△GBF与△GAF中
BF=AF
∠BFG=∠AFG
GF=GF
∴△GBF≌△GAF("SAS")
同理 △CDE≌△ADE("SAS")
∵AB=AC ∠BAC=120°
∴∠ACB=∠ABC=30°
又∵△GBF≌△GAF
∴∠ABC=∠GAF=30°
∴∠AGB=120°
∴∠EGA=60°
同理 ∠GEA=60°
∵∠GEA=∠EGA=60°
∴AG=AE=GE
又∵△GBF≌△GAF △CDE≌△ADE
∴BG=AG CE=AE
∴BG=GE=CE
∴BE=2CE
2.(1)证明:∵AB=AC
∴∠B=45°
连接AM 则AM为AB的垂直平分线 ∠MPB=∠B=∠MAE=45°
∵在四边形AEDF中
DF⊥AF
DE⊥AE
AF⊥AE
∴四边形AEDF为平行四边形
∴DF=AE
∵DF⊥BF
∴∠BFD=90°
∵在△BFD中 ∠BFD=90° ∠B=45°
∴∠FDB=45°
∴BF=DF
∴BF=AE
∵在Rt△ABC中 AB=AC ∠A=90°
∴AM=BM
∵在△AEM与△BFM中
AE=BF
∠EAM=∠FBM
AM=BM
∴△AEM≌△BFM("SAS")
∴MF=ME ∠FMB=∠EMA
∵∠FMB=∠EMA ∠FMB+∠FMA=90°
∴∠EMA+∠FMA=90°
∴△MEF为等腰直角三角形
∵BD=2 ∠DBF=45°DF⊥BF
∴BF=根号2
∵BF=AE
∴AE=根号2
∵BC=6 ∠ABC=45° CA⊥BA
∴AB=3根号2
又∵BF=根号2
∴AF=2根号2
∵在Rt△AEF中
AE=根号2
AF=2根号2
∴FE=根号10
∵在Rt△EMF中
MF=ME
FE=根号10
∴FM=ME=根号5
∴S△MEF=根号5*根号5/2=2.5