如果题目是secx²
令u=secx²,于是y=f(u),利用复合函数求导可知
dy/dx=(dy/du)*(du/dx)
=f'(u)*2x* secx² * tanx²
=2x* secx² * tanx² * f'(secx²)
如果题目是sec²x
令u=sec²x,于是y=f(u),利用复合函数求导可知
dy/dx=(dy/du)*(du/dx)
=f'(u)*2* sec²x* tanx
=2* secx² * tanx * f'(sec²x)
如果题目是secx²
令u=secx²,于是y=f(u),利用复合函数求导可知
dy/dx=(dy/du)*(du/dx)
=f'(u)*2x* secx² * tanx²
=2x* secx² * tanx² * f'(secx²)
如果题目是sec²x
令u=sec²x,于是y=f(u),利用复合函数求导可知
dy/dx=(dy/du)*(du/dx)
=f'(u)*2* sec²x* tanx
=2* secx² * tanx * f'(sec²x)