X1,X2分别为A的对应特征值 λ1,λ2的特征向量,证明X1,X2 线性无关.
1个回答
还需加条件.
否则无法证明X1,X2线性无关.
相关问题
已知A是n阶方阵,λ1,λ2是A的两个不同的特征值,X1,X2分别是它们对应的特征向量,证明x1+x2不是A的特征向量
已知特征值特征向量求矩阵已知三阶方阵A的特征值为λ1=1,λ2=0,λ3=-1特种向量依次为x1=(1,2,2)' x2
求特征向量?A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,λ1=3的线性无关特征向量为(-1 0 1)^T
设a,b分别为A的两个不同的特征值,对应的特征向量分别为x1,x2,则x1与A(x1+x2)线性无关的充要条件是
已知λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求出α2,(A^2)×(α1+α2)线性无关的
线性代数题目:设三阶矩阵A的特征值为λ1=2 λ2=-2 λ3=1 对应的特征值向量依次为P1=(0 1 1)P2=(1
已知二阶矩阵A有特征值λ 1 =1及对应的一个特征向量 e 1 = 1 1 和特征值λ 2 =2及对应的一个特征向量 e
线性代数 对称矩阵三阶对成矩阵A 的特征值 是λ1=1 λ2=2 λ3=3 λ1与λ2的 特征向量为 (-1,-1,1)
一道线性代数题x1+λx2+2x3=1 x1+(2λ-1)x2+3x3=1 x1+λx2+(λ+3)=2λ-1 λ取何值
n维向量 a1,a2线性无关,λ1λ2 为两个实数且 λ1≠λ2,β=λ1α1+λ2α2则α1与β线性无关的充要条件?