解题思路:(1)先因式分解,将除法变为乘法,最后约分化简;
(2)先根据积的乘方计算,再约分化简;
(3)先根据分式的基本性质将各分式化简,再通分计算减法;
(4)先通分计算括号里面的,将除法变为乘法,最后因式分解后约分化简;
(5)根据乘法的分配律简便计算.
(1)
2x−6
4−4x+x2÷(x+3)×
x2+x−6
3−x]
=
2(x−3)
(x−2)2×[1/x+3]×
(x−2)(x+3)
3−x
=-[2/x−2];
(2)−(−
a2
b)2•(−
b2
a)3•(
1
ab)4•(2a3)
=
a4
b2•
b6
a3•[1
a4b4•8a3
=8;
(3)
2+
3y/x
2−
3y
x−
1
2x+
y
3
1
2x−
y
3]
=[2x+3y/2x−3y]-[3x+2y/3x−2y]
=
(2x+3y)(3x−2y)−(2x−3y)(3x+2y)
(2x−3y)(3x−2y)
=[10xy
(2x−3y)(3x−2y);
(4)
3−x/2x−4÷(x+2−
5
x−2)
=
3−x
2(x−2)]÷
(x+2)(x−2)−5
x−2
=[3−x
2(x−2)×
x−2
(x+3)(x−3)
=-
1
2(x+3);
(5)(x2−1)(
1/x−1−
1
x+1−1)
=(x+1)(x-1)(
1
x−1]-[1/x+1]-1)
=x+1-(x-1)-(x+1)(x-1)
=3-x2.
点评:
本题考点: 分式的混合运算.
考点点评: 本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.