(1)首先因为A是非退化阵,所以
Rank(A)=Rank(A_1)+Rank(A_2)=n;
再者,V_1,V_2分别表示A_1,A_2的零空间,因此维数分别是 n-Rank(A_1)和 n-Rank(A_2)
则dim(V_1)+dim(V_2)=n;
(2)设任意向量 x 属于 V_1交 V_2
则 Ax=[A_1,A_2]x=[A_1x,A_2x]=0;
而且 A 非退化,因此方程有唯一解 x=0;
由(1)(2)知结论成立
(1)首先因为A是非退化阵,所以
Rank(A)=Rank(A_1)+Rank(A_2)=n;
再者,V_1,V_2分别表示A_1,A_2的零空间,因此维数分别是 n-Rank(A_1)和 n-Rank(A_2)
则dim(V_1)+dim(V_2)=n;
(2)设任意向量 x 属于 V_1交 V_2
则 Ax=[A_1,A_2]x=[A_1x,A_2x]=0;
而且 A 非退化,因此方程有唯一解 x=0;
由(1)(2)知结论成立