取AB中点P,则AP=CE=AB/2=BC/2,PB=PE
RT△PBE中∠EPB=∠PEB=45°
所以有∠APE=180°-45°=135°
∠FCE=∠DCB°+45=135°=∠APE
∠EAB=90°-∠AEB=180°-90°-∠AEB=∠FEC
△AEP≌△EFC
所以AE=EF
取AB中点P,则AP=CE=AB/2=BC/2,PB=PE
RT△PBE中∠EPB=∠PEB=45°
所以有∠APE=180°-45°=135°
∠FCE=∠DCB°+45=135°=∠APE
∠EAB=90°-∠AEB=180°-90°-∠AEB=∠FEC
△AEP≌△EFC
所以AE=EF