当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x
ay+bx=0 or ay-bx=0
x^2=2py 焦点(0,p/2)
(a,b)到Ax+By+C=0的距离公式:H=|Aa+Bb+C|/根号(A^2+B^2)
所以:(0,p/2)到ay+bx=0的距离:|ap/2+0|/根号(a^2+b^2)=2 其中根号(a^2+b^2)=c
即:ap/2=2c ap=4c
又:e=c/a=2
c=2a代入ap=4c
ap=4*2a=8a
p=8
此时,x^2=16y
当渐近线为ay-bx=0时,结果一样.因此:x^2=16y为C2的方程.