f(x)=x^3+3ax^2+3(a+2)x+1,则f'(x)=3x^2+6ax+3(a+2).
若f(x)既有极大值又有极小值,则f'(x)有两个不同的零点.
判别式=36a^2-36(a+2)=36(a+1)(a-2)>0,解得实数a的取值范围是(-无穷,-1)U(2,+无穷).
f(x)=x^3+3ax^2+3(a+2)x+1,则f'(x)=3x^2+6ax+3(a+2).
若f(x)既有极大值又有极小值,则f'(x)有两个不同的零点.
判别式=36a^2-36(a+2)=36(a+1)(a-2)>0,解得实数a的取值范围是(-无穷,-1)U(2,+无穷).