1/(a1a2)+1/(a2a3)+……+1/(aan)=(n-1)/(a1an),①
以n+1代n,得1/(a1a2)+1/(a2a3)+……+1/(aan)+1/(ana)=n/(a1a),②
②-①,1/(ana)=n/(a1a)-(n-1)/(a1an),
去分母得a1=nan-(n-1)a,
∴an-a1=(n-1)(a-an),
∴a-an=(an-a1)/(n-1),设a2-a1=d,则
a3-a2=(a2-a1)/(2-1)=d,
a4-a3=(a3-a1)/(3-1)=(a3-a2+a2-a1)/2=(d+d)/2=d,
依此类推,a-an=d,
∴{an}是等差数列.