1
∵cosA=(2√5)/5,cosB=3√10/10.
∴sinA=√5/5,sinB=√10/10
∴cos(A+B)=cosAcosB-sinAsinB
=2√5/5*3√10/10-√5/5*√10/10
=√2/2
2
∵cos(A+B)=-cosC
∴cosC=-√2/2
∵b/sinB=a/sinA, a=√10,
根据正弦定理得:
b=asinB/sinA =(√10*√10/10)/(√5/5)=√5
∴S△ABC=1/2absinC=1/2*√10*√5*√2/2=5/2
1
∵cosA=(2√5)/5,cosB=3√10/10.
∴sinA=√5/5,sinB=√10/10
∴cos(A+B)=cosAcosB-sinAsinB
=2√5/5*3√10/10-√5/5*√10/10
=√2/2
2
∵cos(A+B)=-cosC
∴cosC=-√2/2
∵b/sinB=a/sinA, a=√10,
根据正弦定理得:
b=asinB/sinA =(√10*√10/10)/(√5/5)=√5
∴S△ABC=1/2absinC=1/2*√10*√5*√2/2=5/2