(1)
已知x1,x2是方程x²-2x+a=0的两个实数根
∴x1+x2=2
∴x1+x2=3-(√2)-x2=2
解得x2=1-√2
∴x1=2-x2=1+√2
a=x1×x2=-1
即x1=1+√2,x2=1-√2,a=-1
(2)
(x1)³-3(x1)²+2(x1)+x2
=[(x1)-2][(x1)-1]+x2
=[(√2)-1](√2)+1-√2
=3-2√2
(1)
已知x1,x2是方程x²-2x+a=0的两个实数根
∴x1+x2=2
∴x1+x2=3-(√2)-x2=2
解得x2=1-√2
∴x1=2-x2=1+√2
a=x1×x2=-1
即x1=1+√2,x2=1-√2,a=-1
(2)
(x1)³-3(x1)²+2(x1)+x2
=[(x1)-2][(x1)-1]+x2
=[(√2)-1](√2)+1-√2
=3-2√2