3an=2Sn+n
3an+1=2Sn+1 +(n+1)
得:an+1=3an +1
设 an+1 +k =3(an+k)
得 :k=1/2
所以:(an+1 + 1/2)/3(an+ 1/2)=3
a1=S1
3a1=2a1 +1
a1=1
a2=3a1 +1=4
[a2 +1/2]/[a1+1/2]=3
所以 [an+1/2]为等比数列
3an=2Sn+n
3an+1=2Sn+1 +(n+1)
得:an+1=3an +1
设 an+1 +k =3(an+k)
得 :k=1/2
所以:(an+1 + 1/2)/3(an+ 1/2)=3
a1=S1
3a1=2a1 +1
a1=1
a2=3a1 +1=4
[a2 +1/2]/[a1+1/2]=3
所以 [an+1/2]为等比数列