∵sin(2α+β)=sin[(α+β)+α]=sin(α+β)cosα+cos(α+β)sinα=3cos(α+β)sinα,
∴sin(α+β)cosα=2cos(α+β)sinα,即tan(α+β)=2tanα,
∵4tan
α
2 =1-tan 2
α
2 ,
∴
2tan
α
2
1-ta n 2
α
2 =
1
2 ,即tanα=
1
2 ,
∴tan(α+β)=2tanα=1,
∵α∈[0,
π
4 ],β∈[0,
π
4 ],
∴α+β∈[0,
π
2 ],
则α+β=
π
4 .