∵CD=CE,∴∠CDA=∠CEA
∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB
∵ADBC四点共圆,∴∠CAE=∠CBD
∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BCD
∵AC⊥BC===>∠ACD+∠BCD=90º ∴∠ECD=90º,∴△ECD为等腰直角三角形
∴EA+AD=ED=√2CD
∴AD+BD=√2CD
∵CD=CE,∴∠CDA=∠CEA
∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB
∵ADBC四点共圆,∴∠CAE=∠CBD
∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BCD
∵AC⊥BC===>∠ACD+∠BCD=90º ∴∠ECD=90º,∴△ECD为等腰直角三角形
∴EA+AD=ED=√2CD
∴AD+BD=√2CD