设z=2x+π/6,
则:y=asinz+b
因为x∈[-π/6,π/4],所以:z∈[-π/6,2π/3]
显然,当z=π/2时,sinz有最大值,即y有最大值:y|max=asin(π/2)+b=a+b
当z=π/6时,sinz有最小值,即y有最小值:-y|min=asin(-π/6)+b=-a/2+b
依已知,有:
a+b=3……………(1)
-a/2+b=1…………(2)
(1)-(2),有:a-(-a/2)=3-1,即:3a/2=2,解得:a=4/3
代入(1),有:4/3+b=3,解得:b=5/3
解毕.