.(1)∵∠BCD=90°+60°=150°,CB=AC=CD
∴∠CBE=15°,∴ cos∠CBE=cos( 45 0 - 30 0 )=
6 +
2
4 .
(2)在△ABE中,AB=2,由正弦定理得
AE
sin( 45 0 - 15 0 ) =
2
sin( 90 0 + 15 0 ) ,
故 AE=
2sin 30 0
cos 15 0 =
2×
1
2
6 +
2
4 =
6 -
2 .
.(1)∵∠BCD=90°+60°=150°,CB=AC=CD
∴∠CBE=15°,∴ cos∠CBE=cos( 45 0 - 30 0 )=
6 +
2
4 .
(2)在△ABE中,AB=2,由正弦定理得
AE
sin( 45 0 - 15 0 ) =
2
sin( 90 0 + 15 0 ) ,
故 AE=
2sin 30 0
cos 15 0 =
2×
1
2
6 +
2
4 =
6 -
2 .