(1)a3=b2+2
b2=a1+(-1)=0
a3=2
b4=a3+(-1)^3=a3-1=1
a5=b4+4=5
(2)
a(n+1)=bn+n,b(n+1)=an+(-1)^n
bn=a(n-1)+(-1)^(n-1)=a(n-1)-(-1)^n
a(n+1)=a(n-1)-(-1)^n+n
即:a(n+1)-a(n-1)=n-(-1)^n
所以令n=3,5,7,……,2n-1时有:
a4-a2=3+1=4
a6-a4=5+1=6
a8-a6=7+1=8
……………
a2n-a(2n-2)=2n
以上(n-1)个式子左右分别相加:
a2n-a2=(4+6+……+2n)=n^2+n-2
a2=b1+1=2
a2n=n^2+n
(3)
a2n=n^2+n=n(n+1)
1/a2n=1/[n(n+1)]=1/n-1/(n+1)
所以:
1/a2+1/a4+1/a6+...+1/a2n
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
.