在平面直角坐标系中,四边形OABC是平行四边形,直线L经过O,C两点,点A的坐标为(8,0),点B的坐标为(11

2个回答

  • (1)由题意知:点A的坐标为(8,0),点B的坐标为(11.4),

    且OA=BC,故C点坐标为C(3,4),

    设直线l的解析式为y=kx,

    将C点坐标代入y=kx,

    解得k=4 3 ,

    ∴直线l的解析式为y=4 3 x;

    故答案为:(3,4),y=4 3 x;

    (2)根据题意,得OP=t,AQ=2t.分三种情况讨论:

    ①当0<t≤5 2 时,如图1,M点的坐标是(t,4 3 t).

    过点C作CD⊥x轴于D,过点Q作QE⊥x轴于E,可得△AEQ∽△ODC,

    ∴AQ OC =AE OD =QE CD ,

    ∴2t 5 =AE 3 =QE 4 ,

    ∴AE=6t 5 ,EQ=8 5 t,

    ∴Q点的坐标是(8+6 5 t,8 5 t),

    ∴PE=8+6 5 t-t=8+1 5 t,

    ∴S=1 2 •MP•PE=1 2 •4 3 t•(8+1 5 t)=2 15 t2+16 3 t,

    ②当5 2 <t≤3时,如图2,过点Q作QF⊥x轴于F,

    ∵BQ=2t-5,

    ∴OF=11-(2t-5)=16-2t,

    ∴Q点的坐标是(16-2t,4),

    ∴PF=16-2t-t=16-3t,

    ∴S=1 2 •MP•PF=1 2 •4 3 t•(16-3t)=-2t2+32 3 t,

    ③当点Q与点M相遇时,16-2t=t,解得t=16 3 .

    当3<t<16 3 时,如图3,MQ=16-2t-t=16-3t,MP=4.

    S=1 2 •MP•PF=1 2 •4•(16-3t)=-6t+32,

    (3)①当0<t≤5 2 时,S=2 15 t2+16 3 t=2 15 (t+20)2-160 3 ,

    ∵a=2 15 >0,抛物线开口向上,t=5 2 时,最大值为85 6 ;

    ②当5 2 <t≤3时,S=-2t2+32 3 t=-2(t-8 3 )2+128 9 .

    ∵a=-2<0,抛物线开口向下.

    ∴当t=8 3 时,S有最大值,最大值为128 9 .

    ③当3<t<16 3 时,S=-6t+32,

    ∵k=-6<0.

    ∴S随t的增大而减小.

    又∵当t=3时,S=14.当t=16 3 时,S=0.

    ∴0<S<14.

    综上所述,当t=8 3 时,S有最大值,最大值为128 9 .

    (4)当M点在线段CB上运动时,点Q一定在线段CB上,

    ①点Q在点M右侧,QM=xQ-xM=16-2t-t=16-3t,NM=NP-MP=4 3 t-4

    则有16-3t=4 3 t-4 解得t=60 13 ;

    ②点Q在点M左侧,QM=xM-xQ=3t-16,NM=NP-MP=4 3 t-4

    则有3t-16=4 3 t-4 解得t=36 5

    但是,点Q的运动时间为(5+8)÷2=6.5秒,故将②舍去.

    当t=60 13 时,△QMN为等腰三角形.