解构造函数f(x)=|x-1|-|x-4|
知当x≥4时,f(x)=x-1-(x-4)=3
当1<x<4时,f(x)=x-1-(4-x)=2x-5
当x≤1时,f(x)=1-x-(4-x)=-3
故f(x)的最大值为3
又由|x-1|-|x-4|≥a^2-a+1的解集是空集
则a^2-a+1>3
即a^2-a-2>0
即(a-2)(a+1)>0
即a>2或a<-1.
解构造函数f(x)=|x-1|-|x-4|
知当x≥4时,f(x)=x-1-(x-4)=3
当1<x<4时,f(x)=x-1-(4-x)=2x-5
当x≤1时,f(x)=1-x-(4-x)=-3
故f(x)的最大值为3
又由|x-1|-|x-4|≥a^2-a+1的解集是空集
则a^2-a+1>3
即a^2-a-2>0
即(a-2)(a+1)>0
即a>2或a<-1.