证明:∵f(1)=a+b+c=-a /2
∴3a+2b+2c=0.
∴c=-3a /2 -b.
∴f(x)=ax^2+bx-3a /2 -b.
判别式△=b^2-4a(-3a/2-b)=b^2+6a^2+4ab
=(2a+b)^2+2a^2
又∵a>0
∴△>0恒成立,故函数f(x)有两个零点
2、(x1-x2)^2=(x1+x2)^2-4x1x2=(-b/a)^2-4c/a=(b^2-4ac)/a^2
△=b^2-4ac=(-3a/2-c)^2-4ac=9a^2/4-ac+c^2
所以(x1-x2)^2=(9a^2/4-ac+c^2)/a^2=(c/a)^2-c/a+9/4=(c/a-1/2)^2+2
当c/a=1/2时,取的最小的√2
所以|x1-x2|≥√2