(Ⅰ) S n =-
1
2 n 2 +kn =-
1
2 (n-k ) 2 +
1
2 k 2 ,
又k∈N *,所以当n=k时S n取得最大值为
1
2 k 2 =8,解得k=4,
则 S n =-
1
2 n 2 +4n ,
当n≥2时,a n=S n-S n-1=( -
1
2 n 2 +4n)-[-
1
2 (n-1) 2+4(n-1)]=-n+
9
2 ,
当n=1时,a 1=-
1
2 +4=
7
2 ,适合上式,
综上,a n=-n+
9
2 ;
(Ⅱ)由(Ⅰ)得,b n=9-2a n=9-2(-n+
9
2 )=2n,
所以
1
b n b n+1 =
1
2n(2n+2) =
1
4 (
1
n -
1
n+1 ) ,
T n=
1
b 1 b 2 +
1
b 2 b 3 +…+
1
b n b n+1 =
1
4 (1-
1
2 +
1
2 -
1
3 +…+
1
n -
1
n+1 ) =
1
4 (1-
1
n+1 ) =
n
4(n+1) ,
所以数列 {
1
b n b n+1 } 前n项和T n为
n
4(n+1) .