由已知得f′(x)=ax²-3x+a+1
(1)f′(1)=a-3+a+1=0 ,所以a=1
(2)f′(x)=ax²-3x+a+1>x²-x-a+1 ,分离变量得a>(x²+2x)/(x²+2)
由于对于任意a∈(0,+∞)都成立,所以
(x²+2x)/(x²+2)≤0,
即(x²+2x)=x(x+2)≤0 ,
解得-2≤x≤0
由已知得f′(x)=ax²-3x+a+1
(1)f′(1)=a-3+a+1=0 ,所以a=1
(2)f′(x)=ax²-3x+a+1>x²-x-a+1 ,分离变量得a>(x²+2x)/(x²+2)
由于对于任意a∈(0,+∞)都成立,所以
(x²+2x)/(x²+2)≤0,
即(x²+2x)=x(x+2)≤0 ,
解得-2≤x≤0