解题思路:(1)把2x2-3x+1看成整体,构造和它有关的式子,然后进一步分解;
(2)由x的最高指数,联想到[(x+1)2]2,努力构造这个形式解答;
(3)第一、三项符合立方差公式,再提取公因式即可;
(4)把原式化为(x+3)(x+1)(x-1)(x+5)-20=(x2+4x+3)(x2+4x-5)-20,把x2+4x看成整体解答.
(1)(2x2-3x+1)2-22x2+33x-1,
=(2x2-3x+1)2-11(2x2-3x+1)+10,
=(2x2-3x+1-1)(2x2-3x+1-10),
=(2x2-3x)(2x2-3x-9),
=x(2x-3)(2x+3)(x-3);
(2)x4+7x3+14x2+7x+1,
=x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2,
=[(x+1)2]2+3x(x+1)2+2x2,
=[(x+1)2+2x][(x+1)2+x],
=(x2+4x+1)(x2+3x+1);
(3)(x+y)3+2xy(1-x-y)-1
=[(x+y)3-1]+2xy(1-x-y)
=(x+y-1)[(x+y)2+x+y+1]-2xy(x+y-1)
=(x+y-1)(x2+y2+x+y+1);
(4)(x+3)(x2-1)(x+5)-20,
=(x+3)(x+1)(x-1)(x+5)-20,
=(x2+4x+3)(x2+4x-5)-20,
=(x2+4x)2-2(x2+4x)-15-20,
=(x2+4x+5)(x2+4x-7).
点评:
本题考点: 因式分解-分组分解法;提公因式法与公式法的综合运用.
考点点评: 此题主要考查分组分解法分解因式,综合利用了十字相乘法、公式法和提公因式法分解因式,难度较大,要灵活对待,还要有整体思想.