分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3

2个回答

  • 解题思路:(1)把2x2-3x+1看成整体,构造和它有关的式子,然后进一步分解;

    (2)由x的最高指数,联想到[(x+1)2]2,努力构造这个形式解答;

    (3)第一、三项符合立方差公式,再提取公因式即可;

    (4)把原式化为(x+3)(x+1)(x-1)(x+5)-20=(x2+4x+3)(x2+4x-5)-20,把x2+4x看成整体解答.

    (1)(2x2-3x+1)2-22x2+33x-1,

    =(2x2-3x+1)2-11(2x2-3x+1)+10,

    =(2x2-3x+1-1)(2x2-3x+1-10),

    =(2x2-3x)(2x2-3x-9),

    =x(2x-3)(2x+3)(x-3);

    (2)x4+7x3+14x2+7x+1,

    =x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2

    =[(x+1)2]2+3x(x+1)2+2x2

    =[(x+1)2+2x][(x+1)2+x],

    =(x2+4x+1)(x2+3x+1);

    (3)(x+y)3+2xy(1-x-y)-1

    =[(x+y)3-1]+2xy(1-x-y)

    =(x+y-1)[(x+y)2+x+y+1]-2xy(x+y-1)

    =(x+y-1)(x2+y2+x+y+1);

    (4)(x+3)(x2-1)(x+5)-20,

    =(x+3)(x+1)(x-1)(x+5)-20,

    =(x2+4x+3)(x2+4x-5)-20,

    =(x2+4x)2-2(x2+4x)-15-20,

    =(x2+4x+5)(x2+4x-7).

    点评:

    本题考点: 因式分解-分组分解法;提公因式法与公式法的综合运用.

    考点点评: 此题主要考查分组分解法分解因式,综合利用了十字相乘法、公式法和提公因式法分解因式,难度较大,要灵活对待,还要有整体思想.