n>=2时,S[n]=1/4 * (a[n]+1)^2; S[n-1]=1/4 * (a[n-1]+1)^2
两式相减得到a[n]=1/4 * (a[n]^2+2a[n]-a[n-1]^2-2a[n-1])
化简得到a[n]^2-a[n-1]^2=2a[n]+2a[n-1]
得到a[n]-a[n-1]=2所以是等差数列.首项是1,公差是2
a[n]=2n-1
第二步不难,但写出来比较麻烦
答案是Tn=3-(2n+3)/(2^n)
n>=2时,S[n]=1/4 * (a[n]+1)^2; S[n-1]=1/4 * (a[n-1]+1)^2
两式相减得到a[n]=1/4 * (a[n]^2+2a[n]-a[n-1]^2-2a[n-1])
化简得到a[n]^2-a[n-1]^2=2a[n]+2a[n-1]
得到a[n]-a[n-1]=2所以是等差数列.首项是1,公差是2
a[n]=2n-1
第二步不难,但写出来比较麻烦
答案是Tn=3-(2n+3)/(2^n)