解题思路:由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.
当点D恰好落在BC上时,OP=OD,∠A=∠C=60°.
∵∠POD=60°
∴∠AOP+∠COD=∠COD+∠CDO=120°,
∴∠AOP=∠CDO,
∴△AOP≌△CDO,
∴AP=CO=6.
故选C.
点评:
本题考点: 旋转的性质;平行线的性质;全等三角形的判定;等边三角形的性质.
考点点评: 此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.