证明:
延长BE交AC延长线于F
∵AE平分∠BAC
∴∠BAE=∠FAE
∵BE⊥AD
∴∠AEB=∠AEF=90°
又∵AE=AE
∴△AEB≌△AEF(ASA)
∴BE=EF,即BF=2BE
∵∠ACD=90°
∴∠CAD+∠ADC=90°
∵∠CAD+∠F=90°
∴∠ADC=∠F
又∵AC=BC,∠ACD=∠BCF=90°
∴△ACD≌△BCF(AAS)
∴AD=BF=2BE
证明:
延长BE交AC延长线于F
∵AE平分∠BAC
∴∠BAE=∠FAE
∵BE⊥AD
∴∠AEB=∠AEF=90°
又∵AE=AE
∴△AEB≌△AEF(ASA)
∴BE=EF,即BF=2BE
∵∠ACD=90°
∴∠CAD+∠ADC=90°
∵∠CAD+∠F=90°
∴∠ADC=∠F
又∵AC=BC,∠ACD=∠BCF=90°
∴△ACD≌△BCF(AAS)
∴AD=BF=2BE