充分性:二次型f=X^TAX与二次型g=Y^TBY具有相同的秩与正惯性指数 → 矩阵A与矩阵B合同
因为矩阵A为n阶实对称矩阵
所以存在正交矩阵P,使得P^TAP=Λ1(其中Λ1为对角元素只有±1与0的对角矩阵)
因为矩阵B为n阶实对称矩阵
所以存在正交矩阵Q,使得Q^TBQ=Λ2(其中Λ2为对角元素只有±1与0的对角矩阵)
因为二次型f=X^TAX与二次型g=Y^TBY具有相同的秩与正惯性指数
所以矩阵A与矩阵B具有相同的秩与正惯性指数
所以矩阵Λ1与矩阵Λ2具有相同的秩与正惯性指数
所以Λ1=Λ2,即P^TAP=Q^TAQ
所以QP^TAPQ^T=QQ^TBQQ^T
所以(PQ^T)^TA(PQ^T)=EBE=B
所以矩阵A与矩阵B合同
必要性:矩阵A与矩阵B合同 → 二次型f=X^TAX与二次型g=Y^TBY具有相同的秩与正惯性指数
因为矩阵A与矩阵B合同
所以矩阵A与矩阵B具有相同的秩与正惯性指数(合同变换不改变矩阵的秩与正惯性指数)
所以二次型f=X^TAX与二次型g=Y^TBY具有相同的秩与正惯性指数