在△ABC中,求证sin(A/2)+sin(B/2)+sin(C/2)>=3/2

1个回答

  • 证明:

    先用正弦定理.将角度化成边:

    sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)

    =sinc/(sinA+sinB)+sina/(sinB+sinC)+sinb/(sinC+sinA)

    =1/(sina/sinc)+(sinb/sinc)+1/(sinb/sina)+(sinc/sina)+1/(sinc/sinb)+(sinc/sinb)

    =c/(a+b)+a/(b+c)+b/(a+c)

    因此只要证明:

    c/(a+b)+a/(b+c)+b/(a+c)>=3/2即可!

    要证a/(b+c)+b/(a+c)+c/(a+b) >=3/2

    只要证2[a(a+c)(a+b)+b(b+c)(a+b)+c(a+c)(b+c)]-3(a+b)(a+c)(b+c)>=0

    故2[a(a+c)(a+b)+b(b+c)(a+b)+c(a+c)(b+c)]-3(a+b)(a+c)(b+c)=2(a^3+abc+a^2b+a^2c+b^3+ab^2+cb^2+abc+c^3+abc+c^2a+c^2b)-3(a^2b+a^2c+abc+ac^2+b^2a+abc+b^2c+bc^2)=2a^3+2b^3+2c^3-a^2b-a^2c-ab^2-cb^2-ac^2-bc^2=a^2(a-b)+a^2(a-c)+b^2(b-c)+b^2(b-a)+c^2(c-a)+c^2(c-b)=(a-b)^2(a+b)+(a-c)^2(a+c)+(b-c)^2(b+c)

    由设a,b,c均为正数

    所以(a-b)^2(a+b)+(a-c)^2(a+c)+(b-c)^2(b+c)>=0

    综上可知a/(b+c)+b/(a+c)+c/(a+b) >=3/2