如图,长方形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/s的速度向点B移动,点Q沿DA边从

1个回答

  • 解题思路:(1)根据路程=速度×时间即可得出AP=2t,DQ=t,则AQ=6-t,PB=12-2t;

    (2)若△QAP为等腰直角三角形,则只需AQ=AP,列出等式6-t=2t,解得t的值即可,

    (3)四边形QAPC的面积=矩形ABCD的面积-三角形CDQ的面积-三角形PBC的面积,根据题干条件可得四边形QAPC的面积=72-[1/2]x•12-[1/2]×6×(12-2x)=72-36=36,故可得结论四边形QAPC的面积是矩形ABCD面积的一半.

    (1)AQ=6-t,PB=12-2t;

    (2)若△QAP为等腰直角三角形,则只需AQ=AP,

    根据题干条件知AQ=6-t,AP=2t,

    列等式得6-t=2t,解得t=2秒,

    即当t=2时,△QAP为等腰直角三角形;

    (3)四边形QAPC的面积=矩形ABCD的面积-三角形CDQ的面积-三角形PBC的面积,

    根据题干条件可得四边形QAPC的面积=72-[1/2]x•12-[1/2]×6×(12-2x)=72-36=36,

    故可得结论四边形QAPC的面积是矩形ABCD面积的一半.

    点评:

    本题考点: 矩形的性质;列代数式;等腰直角三角形.

    考点点评: 本题主要考查矩形的性质和等腰直角三角形的知识点,解决动点移动问题时,关键是找到相等关系量,此题还考查了一元一次方程的性质及其应用,根据几何图形的边长及面积求出t值.