已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是[1/3],试求数据3x1-2,3x2-2,3x3-2,3x

1个回答

  • 解题思路:根据平均数公式与方差公式即可求解.

    ∵据x1,x2,x3,x4,x5的平均数是2,

    x1+x2+x3+ x4+x5

    5=2,

    ∴3x1-2,3x2-2,3x3-2,3x4-2,3x5-2,的平均数是

    (3x1−2)+(3x2−2)+(3x3−2)+(3x4−2)+(3x5−2)

    5=3×

    x1+x2+x3+ x4+x5

    5-2=4.

    方差是:[1/3]×32=3.

    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是4,方差是3.

    点评:

    本题考点: 方差;算术平均数.

    考点点评: 本题考查了平均数的计算公式和方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 .x,则方差S2=[1/n][(x1-.x)2+(x2-.x)2+…+(xn-.x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.